If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-44x-126=0
a = 1; b = -44; c = -126;
Δ = b2-4ac
Δ = -442-4·1·(-126)
Δ = 2440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2440}=\sqrt{4*610}=\sqrt{4}*\sqrt{610}=2\sqrt{610}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-2\sqrt{610}}{2*1}=\frac{44-2\sqrt{610}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+2\sqrt{610}}{2*1}=\frac{44+2\sqrt{610}}{2} $
| 4x+17=5x+1 | | 72x=4 | | w2−64=0 | | 4x+25(24)=4x(24+6x) | | (10x-18)12x=90 | | 72h=612 | | 16x+12+18x-4=180 | | 8x3-32x2+42x-18=0 | | 12x+10x-18=180 | | 12x+10x-18=90 | | Y=5x+39Y=3.5+60 | | 7.67x+64=58.8289+8x | | 140+3x-5=180 | | 5x+6=-66 | | 3(2a-1)=a+17 | | y=0.4=5.34 | | 20-2b=3b | | y=12(1-0.35)^ | | 216^x=6 | | 4(6+n)=(4•6)+(4•8) | | 5x−1=6x−95x−1=6x−9 | | 7.5(x-1)=-0.5+56.5 | | 10n-50=10•(11-5) | | 0.7(10x+20)=3.6(0.2x+5) | | -2/3-3x=3/2 | | 9x=13x=20x+12 | | 3x^2-8x-171=0 | | −2/3−3x=3/2 | | 5z+11=7z-3 | | -9(9-x)=4x | | (2-4)(2x-7)=4-6(10-x) | | x4=70 |